Zschimmer & Schwarz

Innovating Collaborating Introducing:

EsterTec synthetic esters

Business divisions

- Lubricants
- Personal Care
- Industrial Specialities
- Fiber and Textile Auxiliaries
- Leather Auxiliaries
- Ceramic Auxiliaries
- Cleaning Specialities
- Paints & Coatings

ZS Company profile

Zschimmer & Schwarz – Company Profile

Z&S Lubricant Components

Offering the world's most extensive line of synthetic ester base stocks for industrial, marine, transport and dielectric applications

Explore our broad portfolio of high-performance lubricant base stocks and metalworking additives, or request a tailor-made product that meets your specific formulation needs

zslubes.com

Lubricants

VALUE PROPOSITION

Market Trends Favor Synthetic Lubricant Components

Higher Performance and Longer Life for Overall Lower Cost

- Improved Performance Value
- Wider temperature range performance
- Improved control of friction and wear
- Energy efficiency advantages
- Environmentally friendly with ESG and carbon footprint advantages whenever possible

(#)

Market Trends Favor Synthetic Lubricant Components

Higher Performance and Longer Life for Overall Lower Cost

- Group III- Hydrocracked Petroleum
- GTL- Gas-to-Liquid Hydrocarbons
- PAO- Polyalphaolefins
- PAG- Polyalkylglycols
- POE- Polyol Esters
- AN- Alkylated Naphthalenes

All the Performance Advantages expected from a Polyol Ester, Plus....

- Natural energy efficiency advantages from low density, high VI and superior lubricity
- Best in class hydrolytic stability
- Excellent heat transfer and dielectric fluid properties
- High biogenic content compared to many synthetic polyol esters
- Compatible with PAO/Petroleum fluids and standard elastomers
- Lower cost per unit volume due to 5% lower density

EsterTec synthetic esters

Product Name	ESTERTEC 2N-1416	ESTERTEC 2LN-1418	ESTERTEC 2G-1432
KV100, cSt	3.6	4.1	7
KV40, cSt	16	18	33
Viscosity Index	115	125	180
Pour Point, °C	-60	-40	-42
Density	0.895	0.893	0.890
NOACK volatility, %	9	7	1
Biogenic Content, %	64	65	74
Oxidative Stability			V
Hydrolytic Stability			
Friction/Wear Reduction			
Energy Efficiency Advantage		V	V
Cost/Performance Advantage		V	V

Fields of application for

- Metalworking fluids
- Hydraulic fluids
- Grease
- Compressor fluids
- Transformer oils
- EALs for environmentally sensitive applications
- Bearing lubricants

synthetic esters

- Engine oils
- Transmission fluids
- Gear oils
- Drilling mud lubricants
- Food processing H1 lubricants
- Multifunctional
 Dielectric/Coolant/
 Lubricants

A New Synthetic Ester Product Technology is Now Available

EsterTec "VSP" Esters with Improved Performance

- Novel structure, unique production process
- Standard raw materials that are globally and readily available commodities
- High stability vicinal ester molecular positioning
- Steric hindrance improves oxidative stability
- Secondary alcohols on adjacent carbons improve hydrolytic stability

Vicinal Secondary Polyol Ester

zslubes.com/estertec

F\$terTec

synthetic esters

All the Performance Advantages expected from a standard Diester or Polyol Ester, Plus....

Equal or Better Performance Features:

- Pour Point
- Flash Point
- Foam Tendency
- Demulsibility
- Copper Corrosion
- Oxidative Stability
- Thermal Stability
- Specific Heat
- Thermal Conductivity
- Odor
- Color
- Clarity
- Miscibility with PAO
- Compatibility with Elastomers

EsterTec "VSP" Esters Value Proposition

Reduced Friction and Wear

- Simplify formulations with reduced additive content (metalworking, automotive, industrial)
- EV lubricant/coolants need better EP/AW (EVs are heavier, higher and lower speed torque, new bearing designs)

Excellent Hydrolytic Stability

- Metalworking emulsions
- ICE engine oils, H2ICE engine oils,
- HFO refrigeration compressor oils
- Paper machine oils

Low Density

- Reduced weight in mobile systems (EV immersion coolants, UTHF, Mobile equipment HF)
- Freight cost savings on base oil and formulated product shipments

Low Volatility

- Improved low viscosity lubricant performance (0W engine oils, high speed EV motors)
- Extended fluid life in high temperature applications (bearing grease, mist lubes, engine oils)

EsterTec AT Lab Testing Capabilities – Ready to Support your Formulation Development Program

- ► High and low temperature viscosity, pour point.
- Flash and fire point
- ▶ Foam tendency, Air release, Demulsibility
- Oxidative stability with DSC, RPVOT
- Deposit formation with Pan test and Panel Coker test
- Volatility by TGA (NOACK) and VOC methods
- Hydrolytic stability
- Copper corrosion
- ► Friction, Wear and Extreme Pressure measurements
- Material compatibility, seal swell testing, paint/coatings/elastomers
- Hot/Cold stability and compatibility
- Dielectric properties
- Thermal Conductivity

Zschimmer & Schwarz

PERFORMANCE DATA DETAILS

EsterTec 2N-1416

Performance Data

Ester Class		VSP	Diester				Polyol Ester		Glyceryl Ester
	Test Method	EsterTec 2N-1416	DIDA	DINA	DIOA	DOA	TMP C7/8/10	TMP-C7	C8/10
KV100, cSt	ASTM D7042	3.6	3.6	3.1	2.7	2.3	4.0	3.4	4.0
KV40, cSt	ASTM D7042	16	14	11	9	8	18	14	15
Pour Point, °C	ASTM D5950	-60	-60	-60	-60	-50	-65	-65	-15
Density	ASTM D4052	0.896	0.92	0.923	0.93	0.925	0.95	0.963	0.95
EsterTec Density Advantage	Δ		2.6%	2.9%	3.7%	3.1%	5.7%	7.0%	5.7%
4-Ball Wear, mm*	ASTM D4172	0.52	0.84	0.79	0.89	1.00	0.74	0.65	0.69
Wear Protection Improvement**	Δ		78%	75%	80%	84%	71%	59%	65%
Coefficient of Friction*	ASTM D4172	0.167	0.208	0.221	0.247	0.223	0.183	0.217	0.196
CoF Decrease, %	Δ		25%	32%	48%	34%	10%	30%	17%
Noack Volatility, %	ASTM D6375	9%	15%	19%	26%	32%	5%	10%	8%

*40kg load, 1200 rpm, 75C, 52100 steel, 1 hour

**Considering the Hertzian contact diameter of 0.43mm

How does Density impact Product Cost?

				*Selling		
	Specific	Density,	Density	Price,	Price,	\$/Gal %
Product	Gravity	lb/gal	Difference	\$/lb	\$/gallon	Difference
EsterTec 2N-1416	0.896	7.48		2.00	14.96	
Ester Example A	0.941	7.85	5.0%	2.00	15.70	+5%
Ester Example B	0.941	7.85	5.0%	2.50	19.63	+31%
EsterTec 2G-1432	0.890	7.43		2.00	14.86	
Ester Example A	0.941	7.85	5.7%	2.00	15.70	+6%
Ester Example B	0.941	7.85	5.7%	2.50	19.63	+32%

Formulators sell lubricants to Users by volume. (Gallons/Liters) Z&S sells VSP Esters to Formulators by weight. (lbs/kg)

*General indication of relative selling prices based on contracted volumes greater than 250MT/year

How does Density impact Energy Efficiency?

		Density.	Density	# of lbs in a 55 Gallon		
Product	Specific Gravity	lb/gal	Difference	Drum	Delta, %	Delta, lbs
EsterTec 2N-1416	0.896	7.48		411	0.0%	0
DIDA	0.920	7.68	2.7%	422	2.7%	11
Glyceryl C8/10	0.949	7.92	5.9%	436	5.9%	24
TMP C7	0.963	8.04	7.5%	442	7.5%	31

- Formulators buy drums and totes. EsterTec drums are lighter.
- EsterTec lube systems/sumps are lighter.
- Lower cost to ship.
- Lower energy requirement to pump, circulate, filter.

EsterTec 2N-1418

Performance Data

Ester Class	VSP	Diester		Polyol Ester				
	EsterTec 2LN-1418	DIDA	TMP-C9	TMP C8/10	NGDC	TMP C7/8/10	C8/10	
KV100, cSt	4.1	3.6	4.6	4.4	4.0	4.0	4.0	
KV40, cSt	18	14	21	20	18	18	15	
Pour Point, °C	-40	-60	-50	-40	0	-65	-15	
Density	0.893	0.92	0.94	0.94	0.90	0.95	0.95	
Density Advantage		2.9%	5.0%	5.0%	0.8%	6.0%	6.0%	
							-	
4-Ball Wear, mm*	0.50	0.84	0.77	0.65	0.72	0.74	0.69	
Wear Protection Improvement**		83%	79%	68%	76%	77%	73%	
Coefficient of Friction*	0.175	0.208	0.215	0.173	0.191	0.183	0.196	
Noack Volatility, %	8%	15%	3%	6%	12%	5%	8%	
Noack Volatility, %	8%	15%	3%	6%	12%	5%	8%	

*40kg load, 1200 rpm, 75C, 52100 steel, 1 hour

**Considering the Hertzian contact diameter of 0.43mm

EsterTec 2G-1432

Performance Data

Ester Class	VSP	Diester	Polyol Ester						
	EsterTec 2G-1432	DTDA/1	TMP-TO	PE 4810	NGDO	PE C7/9	TMP C8/10		
KV100, cSt	7.0	5.4	9.4	6.1	5.8	5.0	4.4		
KV40, cSt	33	27	46	32	24	25	20		
Pour Point, °C	-42	-60	-40	-5	-30	-55	-40		
Density	0.890	0.915	0.917	0.96	0.903	0.985	0.94		
EsterTec Density Advantage		2.7%	2.9%	7.3%	1.4%	9.6%	5.3%		
4-Ball Wear, mm*	0.63	0.75	0.77	0.58	0.72	0.81	0.65		
Wear Protection Improvement**		38%	41%	-33%	31%	47%	9%		
		-	-	-	-		-		
Coefficient of Friction*	0.182	0.210	0.246	0.168	0.201	0.204	0.173		
CoF Decrease, %		15%	35%	-8%	10%	12%	-5%		
Noack Volatility, %	1%	7%	1%	1%	5%	5%	4%		

*40kg load, 1200 rpm, 75C, 52100 steel, 1 hour

**Considering the Hertzian contact diameter of 0.43mm

Hydrolytic Stability

- EsterTec demonstrates excellent hydrolytic stability
 - All esters compared with no inhibitor or passivation additives

ASTM D2619	EsterTec 2N-1416	EsterTec 2LN-1418	EsterTec 2G-1432	NGDO	DIOA	DTDA/1	PE C7/9	TMP C8/10	Pass/ Fail
Oil Tan ∆, mg KOH/g	0.03	0.02	0.01	2.90	0.16	0.05	0.10	0.05	<0.2
Water Layer Acidity, mg KOH	1.00	1.00	0.80	18.0	3.47	3.75	1.65	1.26	<5.0
Copper Corrosion Rating, ASTM D130	1b	1b	1b	2	1b	1b	1b	1b	<2
Rating Scale: 0-2 = HIGH 2-5 = MED >5 = LOW	BEST	BEST	BEST	LOW	MED	MED	HIGH	HIGH	Formulated lubricant typical limits

Lubricants

COLLABORATION

Z&S Collaboration with You

- Sampling and Application Lab Testing under CDA
 - Concurrent testing in customer and Z&S labs will accelerate performance assessment
- TSCA / ECHA Test Market Exemption Documentation
 - EPA and ECHA EcoTox testing has been initiated
 - Products can be sampled/used/sold under R&D exemptions
 - Products are Readily Biodegradable and have "clean" Ames test CMR status

Field Testing

- Priority access to EsterTec products
- Commercial production batches have been manufactured and are available
- Collaboration on formulation design

